碲化镉的应用前景分析 3.碲化镉将面临原料短缺的制约 生产碲化镉的特点是受到原材料(碲和镉)的制约,这也就不难解释为何采矿型公司(Amalgamet,Teck Cominko,Asarco)要与生产型公司(5N Plus)加强合作。总体而言,碲(还包括一定量的镉)已成为非常重要的战略资源。为拥有碲资源必将展开更为激烈的“争夺”大战。在2007年,美国“Ⅱ-ⅥInc.”公司收购了菲律宾PRM公司;2008年,中国金堆城钼业集团公司与西色国际投资有限公司合资设立的金堆城西色(加拿大)有限公司收购了加拿大育空锌矿公司(Yukon Zink),它们已经成为该领域的成功典范。 碲已成为制约太阳能和其它领域发展的原料因素。假设在未来10-15年间碲产量增长,并可以拿出400-500吨(当前全部的碲产量)用于太阳能产业,那么,CdTe可贡献总计8000-10000兆瓦太阳能电池,这对解决太阳能问题来说还远远不够。因此,制造太阳能电池的CdTe材料对碲的需求将会非常强劲,从事CdTe基光电转换器的生产企业对碲的需求也将会极度“渴望”。 但也不难想象,短期内依赖现有工艺提高碲产能的可能性并不大。因为出现了一种生产铜的新工艺。与之前的不同是世界铜产量的增大并不意味着硒和碲的产量同步增加。在20世纪90年代初期,由Phelps Dodge和Placer Dome研发的从黄铜矿浸出铜的新工艺,简称SW-EW工艺或“焙烧-浸出-电萃取”,是又一种电解法生产铜的工艺。世界上采用该工艺从事铜生产的总量呈增长态势。如果世界铜产量在2011年增加约380万吨达到2440万吨,那么,有约230万吨铜的新增产能是采用电解法生产,另有150万吨铜新增产能采用电化学法生产。新工艺具有一系列经济优势,但却不会形成含硒和碲的铜电解阳极泥。 目前,一方面,用于回收碲的矿料来源增速缓慢;另一方面,碲的消费量却在不断增大。这必然会引起碲价格的波动,最终也必将体现在与碲相关的化合物和仪器仪表的价值上。

人们认为,碲化镉薄膜太阳能电池是太阳能电池中最容易制造的,因而它向商品化进展最快。 提高效率就是要对电池结构及各层材料工艺进行优化,适当减薄窗口层CdS 的厚度,可减少入射光的损失,从而增加电池短波响应以提高短路电流密度,较高转换效率的碲化镉薄膜太阳能电池就采用了较薄的CdS 窗口层。要降低成本,就必须将CdTe 的沉积温度降到550 ℃以下,以适于使用廉价的玻璃作衬底;实验室成果想要走向产业,必须经过组件以及生产模式的设计、研究和优化过程。近年来,已经有许多国家的研究小组已经能够制造出转换效率12%以上的碲化镉薄膜太阳能电池。
在广泛深入的应用研究基础上,国际上许多国家的CdTe电池已由实验室研究阶段开始走向规模工业化生产。1998年美国的碲化镉薄膜太阳能电池产量只有0.2MW,而在2010年,美国光伏的年CoTe生产量达到了2.2GW,商业模块平均效率为11.7%,而生产成本却低至0.75美元/瓦,并且宣布在今后的几年内会更低。
在广泛深入的应用研究基础上,国际上许多国家的CdTe薄膜太阳电池已由实验室研究阶段开始走向规模工业化生产。1998年美国的CdTe电池产量就为0.2MW,目前,美国高尔登光学公司 (Golden Photo)在CdTe薄膜电池的生产能力为2MW,日本的CdTe电池产量为2.0MW。德国ANTEC公司将在Rudisleben建成一家年产10MW的CdTe薄膜太阳电池组件生产厂,预计其生产成本将会低于$1.4/w。该组件不但性能优良,而且生产工艺先进,使得该光伏组件具有完美的外型,能在建筑物上使用,既拓宽了应用面,又可取代某些建筑材料而使电池成本进一步降低。BP Solar公司计划在Fairfield生产CdTe薄膜太阳电池。而Solar Cells公司也将进一步扩大CdTe薄膜太阳电池生产。